
Vol.:(0123456789)1 3

Physical and Engineering Sciences in Medicine 
https://doi.org/10.1007/s13246-022-01165-9

SCIENTIFIC PAPER

Multi‑modality MRI for Alzheimer’s disease detection using deep 
learning

Latifa Houria1  · Noureddine Belkhamsa1 · Assia Cherfa1 · Yazid Cherfa1

Received: 6 November 2021 / Accepted: 20 July 2022 
© Australasian College of Physical Scientists and Engineers in Medicine 2022

Abstract
Diffusion tensor imaging (DTI) is a new technology in magnetic resonance imaging, which allows us to observe the insightful 
structure of the human body in vivo and non-invasively. It identifies the microstructure of white matter (WM) connectivity 
by estimating the movement of water molecules at each voxel. This makes possible the identification of the damage to WM 
integrity caused by Alzheimer’s disease (AD) at its early stage, called mild cognitive impairment (MCI). Furthermore, the 
brain’s gray matter (GM) atrophy characterizes the main structural changes in AD, which can be sensitively detected by 
structural MRI (sMRI) modality. In this research, we aimed to classify the Alzheimer’s diseases stages by developing a novel 
multi-modality MRI (DTI and sMRI) fusion strategy to detect WM alterations and GM atrophy in AD patients. The latter is 
based on a 2-dimensional deep convolutional neural network (CNN) features extractor and a support vector machine (SVM) 
classifier. The fusion framework consists of merging features extracted from DTI scalar metrics [(fractional anisotropy (FA) 
and mean diffusivity (MD)], and GM using 2D-CNN and feeding them to SVM to classify AD versus cognitively normal 
(CN), AD versus MCI, and MCI versus CN. Our novel multimodal AD method demonstrates a superior performance with 
an accuracy of 99.79%, 99.6%, and 97.00% for AD/CN, AD/MCI, and MCI/CN respectively.

Keywords Diffusion tensor imaging · Structural MRI · Alzheimer’s disease · Convolutional neural network · Support vector 
machine

Introduction

Alzheimer’s disease (AD) is an irreversible progressive neu-
rodegenerative disorder that affects people over the age of 65 
and outlines around 60% of dementia worldwide. It is caused 
by damage to nerve cells in certain brain regions, affecting a 
person’s memory and cognitive abilities, which disrupt their 
daily life. The Alzheimer’s Association declares that AD is 
the sixth leading cause of death in the USA; around 50 mil-
lion people were diagnosed with this disease in 2018 and in 

2050, this number will be tripled [1]. At present, no effective 
treatment or prevention is found. Moreover, disease manage-
ment is prohibitively costly. Early screening of this disease 
is of primordial importance for researchers to slow down 
its progression and optimize the treatment. In this context, 
advances in neuroimaging, primarily magnetic resonance 
imaging (MRI), have shown the potential to improve the 
early diagnosis of AD.

AD is characterized by a progressive loss of Gray mat-
ter (GM) that occurs pre-symptomatically in certain neuro-
anatomical structures [2]. Structural MRI (sMRI) is the 
most used neuroimaging modality to detect brain atrophy. 
It has already highlighted many biomarkers of Alzheimer’s 
disease; in particular, the atrophy of structures such as the 
hippocampus, the amygdala, and the thalamus [3]. In fact, 
hippocampal atrophy in prodromal patients proved to be the 
best structural predictor of Alzheimer’s disease progression 
[4]. However, it is associated with a large number of neuro-
degenerative pathologies, thereby limiting its specificity to 
Alzheimer’s disease [5].
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Within this frame of reference, many studies on the AD-
prodromal phase called mild cognitive impairment (MCI) 
have focused their research on the hippocampus. Neverthe-
less, some other structures appear interesting such as, the 
volume of the amygdala which could be a structural predic-
tor as powerful or even more efficient than the volume of the 
hippocampus to predict MCI [6, 7]. Furthermore, there are 
changes in white matter that preceded gray matter atrophy 
but are not detectable by sMRI [8]. The introduction of dif-
fusion tensor imaging allows identification of these changes 
when the patient still presents an MCI [9]. The MCI is the 
transitory phase between (CN) decline and AD or another 
dementia.

DTI has conventionally studied the white matter micro-
structural integrity based on the estimation of the water 
molecules’ diffusion in all directions (six directions at least) 
[10]. The degree of anisotropy of water diffusion is repre-
sented by the fractional anisotropy (FA), while mean dif-
fusivity (MD) represents its magnitude. Studies have shown 
the importance of measuring these two DTI indices (FA and 
MD) to describe the physiological aging in the MCI patient 
phase [11]. Increased MD and decreased FA were reported 
in AD patients compared to CN. Higher MD in MCI patients 
was observed in both hippocampi [12]. Indeed, a consider-
able increase in MD and decrease in FA indicates a pro-
gressive loss of the barriers restricting the motion of water 
molecules in tissue compartments, associated with neuronal 
loss in AD [13]. It, therefore, seems important to measure 
the DTI indices because they can provide additional infor-
mation on the pathophysiology of the disease.

The introduction of machine learning and deep learning 
techniques has greatly contributed to the diagnosis and prog-
nosis of AD based on neuroimaging data [14]. Numerous 
research works have been published for the AD classification 
using DTI, where the FA and MD were the most frequently 
metrics used as features. The most popular among these 
machine learning-based methods utilized as classifiers, are 
the support vector machine (SVM), and random forest (RF) 
[15–19]. Most of them used the tract-based spatial statistics 
(TBSS) algorithm [20] to extract the white matter skeleton 
from FA and MD. They selected only the pertinence WM 
Skeleton information to perform binary or multi-classifica-
tion using Alzheimer’s disease national initiative (ADNI) 
data set. The difference was presented in the classification 
task, where Maggipinto et al. [18] used random forest and 
Lella et al. [19] proposed to concatenate the best result from 
different classifiers [(SVM, RF, and Multi-layer perceptron 
(MLP)] from all features groups [(FA, MD, radial diffusivity 
(RD), longitudinal diffusivity (LD)]. The use of DTI-based 
machine learning shows impressive performance. However, 
it is necessary to extract features and subsequently select 
the relevant ones to perform classification tasks, which is 
difficult and time-consuming.

Deep learning is a state-of-the-art machine learning 
method [21]. Classification techniques using deep convolu-
tional neural networks (CNN) revealed higher AD detection 
performance [22]. Most of the literature approaches have 
used CNN-based sMRI to classify the different stages of 
Alzheimer’s disease. CNN can handle low to high automatic 
feature extraction from complex structures. Some authors 
used a 2D deep CNN architecture trained on sMRI images 
of the full-brain from the ADNI database to perform a 
multi-classification task, which resulted in an accuracy of 
99.9%. Wang et al. [23] suggested an eight-layer 2DCNN 
and achieved an accuracy of 97.65% to classify AD versus 
CN using the ADNI sMRI dataset.

Others have reported excellent results using transfer 
learning methods [24–26]. The transfer learning (TL) tech-
nique has been widely used as a powerful tool even with a 
smaller dataset containing a few hundred images. It involves 
reusing the weights of a pretrained model for other applica-
tions. Authors in [27] presented an approach for Alzheimer’s 
Disease multi-classification. They fine-tuned the AlexNet 
using the preprocessed segmented and non-segmented 
images taken from the OASIS repository. Sava et al. [28] 
used sMRI images to train 29 different pre-trained models. 
The higher accuracy is provided using the EfficientNetB0 
model to categorize AD versus CN versus MCI. In [29], the 
authors reached an accuracy of 98.73 to classify AD versus 
CN. They segmented the GM tissue using the tissue seg-
mentation method, which was subsequently classified using 
the VGG family.

However, others have suggested extracting deep discrimi-
native features based on transfer learning methods and clas-
sifying them with SVM [30, 31]. Jiang et al. [31] applied 
VGG16 to extract features from T1w images and classfiying 
them via SVM to identify EMCI from CN. Naz et al. [25] 
used deep features extracted from fully connected layers of 
pre-trained CNN. The study is realized using eleven pre-
trained CNNs and the classification task is done using SVM 
where the VGG family presented the best performance. In 
[32], sMRI features were retrieved from Resnet101, Incep-
tionV3, and Darknet53 models, then concatenated and opti-
mized using the mRMR approach. KNN and SVM were uti-
lized to classify these features. An accuracy of 99.1% was 
obtained.

In recent years, DTI indices, principally MD, com-
bined with sMRI information have been adopted by many 
researchers. They proposed different techniques to combine 
DTI and sMRI. Massalimova et al. [33] have tried multi-
modal Resnet-18 network (sMRI and DTI) in classifying 
CN, MCI, and AD from OASIS-3 datasets. They managed 
to suggest that the classification performed by the softmax 
layer could be preferable than another classifier in contrast 
to Kang et al. [30]. Kang et al. [30] suggested a fusion tech-
nique consisting of merging slices with the same index of the 
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T1w, FA, and MD images into an RGB slice. After that, the 
pre-trained VGG16 network is used to extract the features 
and SVM classifier to discriminate MCI patients, from CN 
using the ADNI dataset.

Aderghal et al. [34] proposed LeNet-like CNN based on 
sMRI and DTI-MD images. They selected the median slice 
Hippocampal and its two neighbors in each projection (axial, 
sagittal, and coronal). The proposed CNN is trained on the 
MNIST database. They first retrained the model on sMRI 
then on DTI-MD. They achieved a classification accuracy of 
86.83% for AD versus CN, 69.85% for MCI versus CN, and 
71.75% for AD versus MCI. Marzban et al. [35] proposed 
a simple 2DCNN based on a single convolution layer. They 
trained the model on diffusion scalars metrics (FA, MO, and 
MD) and GM. The cascaded MD and GM volumes achieved 
an overall accuracy of 88.9% and 79.6% respectively for AD 
versus CN and MCI versus CN. Ahmed et al. [36] extracted 
visual features from the hippocampus ROI in both sMRI and 
MD images. The extracted features and the amount of CSF 
calculated on the sMRI are combined and classified using 
multi-kernel learning (MKL).

Perez-Gonzalez et al. [37] computed the relevant fea-
tures from sMRI and DTI and combined them with neuro-
psychological scores before feeding them to RF classifier. 
They achieved an accuracy of 88.8% using hippocampus, 
thalamus, and amygdala features for the right and left hemi-
spheres to distinguish between MCI and CN.

Fang et al. [38] proposed re-transfer learning approach 
based AlexNet model to classify AD versus EMCI, AD 
versus LMCI, AD versus CN and EMCI versus CN. The 
first transfer learning process train sMRI with the pretrained 
AlexNet model and the model weight obtained is then used 
to train DTI images (FA and MD). Agostinho et al. [39] 
compared the performance of combining sMRI+DTI and 
sMRI+positron emission tomography (PET). They used 
various anatomical labeling atlases to divide the brain into 
ROIs and then extracted different metrics. After that, an 
embedded-based technique was used to minimize the fea-
tures and SVM to classify them into CN and AD. The find-
ing results achieved an accuracy of 97.00%, and 98.00% 
using sMRI+DTI and sMRI+ PET respectively.

Assessment of pathophysiological changes by neuroimag-
ing would be essential to predict AD. Single modality cannot 
provide enough information, therefore, multi-modality must 
be combined to detect AD. sMRI and DTI have received 
more attention in recent years to study the progression of 
Alzheimer’s disease. These two modalities are comple-
mentary; the sMRI detect the shrinkage of gray matter and 
changes in the brain volume. Moreover, the DTI is a useful 
prediction marker to detect the WM deterioration. In this 
context, we aim to detect patterns of micro and macrostruc-
tural changes in the different AD stages using the multi-
modality MRI (sMRI and DTI) fusion process. We propose 

a new methodology that consists of a new CNN to extract 
the salient visual features from the DTI measurements and 
the GM images separately. After that, these features are  con-
catenated and transmitted to SVM to identify AD from MCI, 
AD from CN, and MCI from CN.

Methodology

Our proposed strategy consists of pre-processing, a 2D slice 
selection, a features extraction, and a classification. We work 
on DTI measurements (FA, MD) and GM brain segmented 
from T1-weighted sMRI to classify (CN vs. AD), (AD vs. 
MCI), and (CN vs. MCI). New 2DCNN architecture was 
trained by slice-level dataset (only the 32 relevant slices 
selected from FA, MD, GM images) to extract the salient 
features from DTI maps and GM. The optimal FA-CNN, 
MD-CNN, and GM-CNN models are saved depending on 
lower loss value during the training process, then adapted 
to extract features from the last fully connected layer. After 
that, the features of each slice in the subject-level dataset 
(FA, MD, GM) are extracted by their optimal model (FA-
CNN, MD-CNN, and GM-CNN). These features are merg-
ing and feeding to the SVM classifier to improve the perfor-
mance as is illustrated in Fig. 1. The detailed description is 
found in the following subsections.

Database

Dataset used in this work has been obtained from the Alzhei-
mer’s disease neuroimaging initiative (ADNI) (http:// adni. 
loni. usc. edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael 
W. Weiner, MD. The objectives of the ADNI study are the 
identification of biomarkers for clinical use and early detec-
tion of AD [40]. The selected balanced dataset includes both 
Diffusion-weighted images (DWI) and sMRI brain scans 
from 150 individuals of both genders (50 AD, 50 CN, and 
50 MCI), with ages varying from 55 to 90 acquired by GE 
medical system scanners. The 50 MCI subjects are selected 
with 25 early MCI and 25 Late MCI. The selected subjects 
coming from ADNI-GO and ADNI-2 phases.

The demographic information of the participants 
employed in this study is listed in Table 1, where the mini-
mental state examination (MMSE) is a mental test that 
measures cognitive function. The lower MMSE score, as an 
auxiliary diagnostic index, implies poor cognitive ability.

The raw 3D T1-weighted sMRI were acquired with 256×
256×196 voxels per volume, a voxel size of 1.0×1.0×1.2 
mm3, inversion time = 400 ms, and flip angle = 11. The raw 
DWI data was acquired with 128 ×128 matrix, a voxel size 
of 2.7× 2.7 ×2.7 mm3 , and 41 gradient directions (b = 1000 
s / mm2 ). In addition to these images, 5 T2-weighted images 

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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without diffusion (b = 0) are used as reference scans. More 
informtion about the acquisition parameters can be found in 
the ADNI2 protocol.

Pre‑processing

All downloaded data are converted from DICOM format to 
Neuroimaging InFormatics Technology Initiative (NIFTI) 
format, using MRICro software (http:// www. mricro. com/).

The pre-processing steps of the raw sMRI volumes to seg-
ment the GM are performed by the CAT12 toolbox (http:// 
www. neuro. uni- jena. de/ cat/). The CAT12 toolbox is an 
extension of SPM12 software [41]. In short, all T1-weighted 
3D sMRI are normalized by the diffeomorphic anatomic reg-
istration through exponentiated lie algebra (DARTEL algo-
rithm) using an affine transformation followed by a nonlinear 
registration, corrected for bias field inhomogeneities, and 
then segmented into GM, WM components.

DWI volumes are preprocessed using functional magnetic 
resonance imaging of the brain (FMRIB) software library 

(FSL) [42]. First DWI scans are corrected for eddy current 
distortions and susceptibility artefacts by the FSL-eddy cor-
rect. FSL’s brain extraction tool was used to remove the brain 
skull. The diffusion tensor calculations are performed by the 
FSL dtifit at each voxel of fixed DWI scans. The eigenvalues 
of the diffusion tensor ( � 1, � 2 , � 3) were utilized to obtain 
maps of scalar anisotropy and diffusivity. Several diffusion 
metrics can be calculated. The widely used diffusion metrics 
are fractional anisotropy (FA) and mean diffusivity (MD). 
FA is calculated using Eq. (1). MD represents the magnitude 
of diffusion which is calculated by averaging the three eigen-
values as it is mentioned in Eq. (2). Finally, FA and MD are 
co-registered with the corresponding sMRI scans and each 
scan contains 121×145×121 voxels using SPM12.

2D slice selection

Each FA, MD, and GM volume is decomposed into 2D 
slices along the axial view to highlight the most distinctive 
features and ensure improved classification efficiency. We 
select 32 slices from each subject based on higher entropy 

(1)FA =

√

1

2

√

(�2
1
− �

2

2
) + (�2

2
− �

2

3
)(�2

3
− �

2

1
)

�
2

1
+ �

2

2
+ �

2

3

(2)MD =
�
1
+ �

2
+ �

3

3

Raw DWI scans

Raw sMRI scans

2D slice 
selection

Output

2D slice 
selection

2D slice 
selection

FA Pooling FC1 FC2

......

2D Conv

MD Pooling FC1 FC2

......

2D Conv

Pooling FC1 FC2

......

2D Conv

Concatenate
features

GM

Preprocessing

DARTEL
algorithm

Co-registration

CNN feature extractor

SVM classifier

Fig. 1  Flowchart of the proposed fusion multi-modalities system using the 2DCNN-SVM approach for AD identification

Table 1  Subject-related statistics data

Classes CN MCI AD

Number 50 50 50
Gender (F/M) 27/23 20/30 28/22
Age 72.5± 6.1 74.40± 7.47 75.60 ± 8.63
MMSE 28.93 ± 1.18 27.4 ± 1.99 23.0 ± 2.42

http://www.mricro.com/
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
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information (slices with indices 34 65). The selected slices 
are associated with most of the deteriorated AD brain 
regions mentioned in literature such as the hippocampus, 
the entorhinal cortex, and thalamus. As a result, a total 
of 1600 (32×50) of each class (CN, MCI, and AD) are 
selected.

Feature extraction using 2DCNN

The handcrafted features extraction was the main prob-
lem in the traditional machine learning algorithms which 
is hard and time-consuming. CNN can perform this task 
automatically without human intervention.

CNN is the most common deep learning model used 
among neural networks. It is inspired by the human visual 
system. A typical CNN architecture comprises principally 
an input layer, convolution layer, pooling layer, fully con-
nected layer, and classification layer. The convolution layer 
extracts automatically the features from the input FA, MD, 
or GM images by multiplying element-wise with a filter. 
The pooling layer aimed to reduce the redundant informa-
tion by acquiring the average of a region or the maximum. 
The fully connected layer is used to reduce and transform 
the feature maps to a column feature map. The classifiers 
are finally used for AD prediction.

In short, the 2DCNN architecture consists of three con-
volutional layers with 3 × 3 size filters. Each convolutional 
layer is followed by a RELU layer, batch normalization 
(BN) layers, and a max-pooling layer, then two fully con-
nected layers, softmax layer, and output layer. The RELU 
layer sets the negative values to zero and BN accelerates 
the training process. More details are tabulated in Table 2.

Classification using support vector machine (SVM)

SVM is a widely applied supervised learning method that 
treats small high-dimensional data by finding a maximal 
margin hyperplane to separate classes and solve a binary 
classification problem [43]. SVM is considered better to use 
than the Softmax layer as is mentioned in previously pub-
lished studies [44, 45].

The trained FA-CNN, MD-CNN, and GM-CNN are 
adopted to extract the features. These features are then trans-
mitted to the SVM classifier instead of the Softmax layer for 
AD classification. These features extracted from FA, MD, 
and GM images is a matrix whose size is the number of 
slices multiplied by the number of features selected from 
each slice. For 32 slices of each subject, the feature represen-
tation has the dimension of 32× 2. For all subjects (100), the 
output of each model is a matrix of 100 32× 2. They are then 
concatenated into a total feature matrix with the dimension 
of 3200× 2. SVM classifier is trained and tested using these 
deep extracted features as is shown in Fig. 2.

Multi‑modality MRI fusion process

The automatic AD screening fusion algorithm developed 
using multi-modalities MRI is illustrated in Fig. 1. The three 
optimal CNN (FA-CNN, MD-CNN and, GM-CNN) are used 
to extract features. We tried several fusion procedures expe-
riences (FA and MD), (FA and GM), (MD and GM), and 
(FA and MD and GM) to choose the best model score. The 
fusion process consists of merging the features extracted 
from FA, MD, and GM into a global feature vector. Accord-
ingly, the size of the fused FA + MD + GM feature matrix 
is 3200×6.

Table 2  Layers proprieties 
for the proposed 2DCNN 
architecture

Layers (#) Layer name Layer properties

1 Input layer 145×121× 1 images
2 Convolutional 32 3 × 3 × 1 convolutions with stride [1 1] and padding same
3 Batch normalization 32
4 Rectified linear unit Rectified linear unit
5 Max pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
6 Convolutional 16 3 ×3× 32 convolutions with stride [1 1] and padding same
7 Batch normalization 16
8 Rectified linear unit Rectified linear unit
9 Max pooling 2× 2 max pooling with stride [2 2] and padding [0 0 0 0]
10 Convolutional 8 3 ×3× 16 convolutions with stride [1 1] and padding same
11 Batch normalization 8
12 Rectified linear unit Rectified linear unit
13 Fully connected 256 hidden neurons in fully connected layer
14 Fully connected 2 hidden neurons in fully connected layer
15 Softmax Softmax
16 Classification output 2 output classes
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Results

Experiments

In this work, several experiments are carried out to vali-
date the effectiveness of our proposed method to classify 
(AD vs. CN), (CN vs. MCI), and (AD vs. MCI). In the first 
experience, we performed a direct unimodal classification 
of features extracted from FA, MD, and GM. This gives us 
information about the best modality and map. In the second 
experiment, we study whether multi-modality increases per-
formance and allows better discrimination between the dif-
ferent classes or not. This is achieved by studying the impact 
of merging features of the two modalities.

The 2DCNN-SVM proposed has been implemented using 
MATLAB ver. R2019a and running on a 3.1 GHz Intel-i7 
processor, 16 GB of RAM. The CNN model was trained 
using an optimized stochastic gradient descent momentum 
(SGDM) using the back-propagation algorithm and cross-
entropy as a loss function. The batch size is 64, the learning 
rate is 0.0001 for 25 epochs. There is a total of 3200 images 
of each map (FA, MD, and GM), 1600 images for each class. 
The dataset is divided into 75% for training, 15% for valida-
tion and the remaining 15% for testing the SVM. The same 
CNN architecture is used to train FA slices, MD slices and 
GM slices.

For the SVM classifier, the extracted data is categorized 
into training, validation, and test data. We used the extracted 
features from 2720 images for the training and 480 images 
for the test.

The best SVM using radial basis function (RBF) (Gauss-
ian kernel) classification score was obtained by 10-fold 

cross-validation. The optimal hyperparameters (cost and 
gamma) were determined using the grid search technique. 
It finds the best model result from different combinations of 
parameters; where cost controls the error and gamma gives 
the curvature weight of the decision boundary.

Evaluation

The performance of our method was validated using accu-
racy and the area under the receiver operating characteristic 
curve (AUC). The validation results are illustrated in Table 3 
and the ROC curves of 10-fold cross-validation are shown 
in Figs. 3, 4, 5.

The fused FA, MD, and GM improved better the result 
and outperformed the single modality and the sMRI+MD 
fused procedures adopted in many previous studies [30, 34, 
35].

We tested our method using 240 AD images, 240 CN 
images, and 240 MCI images. The used evaluation metrics 
are the accuracy, sensitivity, and specificity determined by 
the confusion matrices. An example of the confusion matrix 
of the fused characteristics FA, MD, and GM is shown in 
Figs. 6, 7, 8. All test results are summarized in Table 4.

Table 4 shows that the FA, MD, and GM are important 
to discriminate the different AD stages. For the use of FA, 
MD, GM independently, we report that MD obtained the 
best result in the case of AD versus CN with an accuracy of 
98.96%. However, the GM yields better results in classify-
ing AD versus MCI and CN versus MCI with an accuracy 
of 96.88% and 93.50% respectively.

We investigated the best combination of features (FA and 
MD, FA and GM, and MD and GM). Fused FA and MD 

Fig. 2  The pipeline of proposed 
GM-CNN with SVM method to 
distinguish between AD and CN
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Table 3  The performance of the 
validation dataset

Bold values indicate the best results

Classes Performances FA MD FA+ MD GM GM+ FA GM+ MD GM+ FA + MD

AD/CN Accuracy 95.48 97.94 97.79 96.91 99.12 98.49 99.52
AUC 98.79 99.52 98.91 99.51 99.96 98.97 99.99

AD/MCI Accuracy 92.98 96.21 96.95 96.87 98.49 98.68 99.08
AUC 96.42 99.02 99.54 99.31 99.98 99.93 99.96

CN/MCI Accuracy 93.31 92.76 94.85 93.03 97.17 95.99 97.79
AUC 96.43 95.18 98.83 97.72 99.06 98.65 99.60
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outperformed the other combined features with an accuracy 
of 99.98 % and 98.33% to classify AD versus CN and AD 
versus MCI. On the other hand, fused GM and MD achieved 

higher results to classify CN versus MCI with an accuracy of 
97.00%, a sensitivity of 97.20%, and a specificity of 96.80%. 
Compared to the use of the single modality, the merged FA, 
MD, and GM led to an increase of approximately 3.54%, 
5.83%, 4.1% for the accuracy, 3.55%, 5,85%, 4.75% for the 
sensitivity, and 2.8%, 5.85%, 5.2% for the specificity in the 
three cases of classification (AD versus CN), (AD versus 
MCI), and (CN versus MCI) respectively. So, the multi-
modality gives the best performance as clearly shown in 
Fig. 9.

Discussion

To validate the performance and efficiency of our novel 
workflow, we compared it to the previous approaches pre-
sented in the literature and dealing with the same databases 
(ADNI) and the same modalities (sMRI and DTI). Our 
results gained higher accuracy in the AD detection compared 
to other studies as is shown in Table 5.

In general, our results concerning AD early detection 
imply the existence of distinct pathophysiological processes. 
In fact, the hippocampus is known to be one of the earliest 
and most severely damaged structures affected by AD. How-
ever, there are other structures involved in AD detection such 
as the amygdala, thalamus, and putamen. The relevant slices 
selection seems a powerful and easy method than segment-
ing the hippocampus or other brain’s regions which requires 
a human expert. Our network learns the complex patterns of 
brain atrophy from relevant sections that contain almost all 
of the AD-affected regions mentioned in the literature, for 
each patient. This eliminates the process of segmentation of 
the hippocampus and other regions of the brain. Moreover, 
a subsequent selection of the most discriminating character-
istics is avoided in our approach.

Our results confirm the effectiveness of the DTI meas-
urement FA and MD in the classification of AD versus CN, 
AD versus MCI, and CN versus MCI which is consistent 
with the previous works [18, 19]. In addition, The GM 
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Table 4  Performance evaluation 
of the proposed 2DCNN-SVM 
technique on the test dataset

Bold values indicate the best results

Classes Performances FA MD FA+MD GM GM+FA GM+MD GM+FA + MD

AD/CN Accuracy 97.50 98.96 99.89 96.25 98.50 99.38 99.79
Sensitivity 97.50 99.00 98.75 96.25 98.55 99.40 99.80
Specificity 97.50 99.00 98.75 96.25 98.50 99.40 99.80

AD/MCI Accuracy 93.75 95.42 98.33 96.88 98.96 98.13 99.58
Sensitivity 94.00 95.45 98.35 96.90 99.00 98.20 99.60
Specificity 93.75 95.45 98.35 96.85 98.95 98.15 99.60

CN/MCI Accuracy 92.30 92.10 94.40 93.50 95.60 97.00 97.00
Sensitivity 92.25 92.20 94.50 93.60 95.90 97.20 96.95
Specificity 92.20 91.80 94.20 93.25 95.20 96.80 97.00
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atrophy in sMRI is of great interest to researchers for the 
AD early detection. The sMRI based transfer learning has 
proven impressive results [24, 26]. Generally, the VGG16 
and VGG19 models have gained higher accuracy than other 
pre-trained models [25]. Recently, some of the authors [30, 
31] succeeded in using a pre-trained (VGG16) model for 
automatic extraction of features and SVM for the classifica-
tion; they achieved a higher accuracy. However, the transfer 
learning technique relies generally on natural images whose 
models are trained using the Imagenet database [46]. Con-
versely, our simple networks learn and extract from scratch 
the most pertinent features.

In the past few years, the multi modalities (DTI-MD and 
sMRI) were reported by many researchers. They proposed 
different combination techniques to ensure the best classi-
fication. Aderghal et al. [34] suggested the transfer learn-
ing technique to perform the fusion process and Marzban 
et al. [35] adopted a cascaded CNN. However, they achieved 

lower accuracy than what we got which is over 97%. This is 
probably due to the small sample size we used compared to 
them, or the fact that we didn’t work on specific ROI, or the 
impact of adding FA.

In summary, both, diffusion scales metrics and the GM 
are powerful elements and important for AD stage discrimi-
nation. The multi-modality fusion process (FA+MD+GM) 
seems to be the best technique to improve the AD classifica-
tion performance.

Conclusions

This paper proposes a computer-assisted diagnosis for 
Alzheimer’s disease classification using multimodality 
MRI imaging. A new CNN is used to extract features from 
DTI-FA, DTI-MD, and GM images. Deep features are 
concatenated and fed to the SVM classifier. The proposed 

Fig. 9  Comparison of perfor-
mance of proposed technique 
for binary classification of AD 
versus CN, AD versus MCI, and 
CN versus MCI

Table 5  Comparison of results with state-of-the-art techniques applied to AD detection

Bold values indicate the best results

Study Modality Subject size Method (Maps and classifier) Classification accuracy (%)

AD CN MCI AD /CN   CN / MCI    MCI/ AD  

Lella et al. (2017) [17] DTI 40 40 – (FA, MD), RF,SVM and naive 
Bayes

78.00 – –

Maggipinto et al. (2017) [18] DTI 89 90 90 (FA  MD), RF 87.00 81.00 –
Ahmed et al. (2017) [36] DTI+sMRI     45 52 58 Hippocampus ROI 

(sMRI+MD)+CSF volume, SVM
90.20 79.42 76.63

Aderghal et al. (2020) [34] DTI+sMRI 64 399 273 Hippocampus ROI (sMRI+MD), 
LeNet-CNN

92.30 78.48 79.16

Jiang et al. (2020) [31] sMRI –    50    70    VGG16 with SVM – 89.40 –
Marzban et al. (2020) [35] DTI+sMRI 115 185 106 (MD, FA, MO, GM),   2DCNN 93.50 – 79.6
Kang et al. (2020) [30] DTI+sMRI – 50 70 (FA+MD+sMRI),  VGG16+SVM – 94.20 –
Feng et al. (2020) [45] sMRI 130 135 133 3D-CNN+SVM 99.10 98.90 89.40
Lella et al. (2021) [19] DTI 40 40 – (FA+MD+RD+LD),SVM, RF, 

PML
88.50 – –

Naz et al. (2021) [25] sMRI 95 146 138 VGG16, VGG19 98.89 97.06 99.27
Our approach DTI+sMRI 50 50        50      50 50 (FA+MD,+GM),  2DCNN-SVM 99.79 99.58 97.00
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CNN-SVM approach demonstrates the effectiveness of mul-
timodal MRI use by achieving a classification accuracy of 
99.79%, 99.85%, and 97.00% for AD/CN, AD/MCI, and 
CN/MCI, respectively. The recent findings show that the 
proposed approach offers value to the healthcare profession 
by allowing for the precise classification of Alzheimer’s 
disease.

In the future, a new fusion technique will be present. 
We will incorporate other neuroimaging techniques or DTI 
measurements like LD and RD. The three planes (axial, sag-
ittal, and coronal) can also be merged instead of limiting the 
study to the axial plane.

Acknowledgements This project was developped by the LASICOM 
laboratory of University of Blida 1, Department of Electrical Engineer-
ing. The authors would like to acknowledge the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) for the public sharing of these pre-
cious neuroimaging data (http:// adni. loni. usc. edu). We are thankful 
to the General Directorate of Scientific Research and Technological 
Development (DGRSDT) for their support in developing this work.

Author contributions All authors were involved in the work leading 
up to the manuscript. All sources used are properly disclosed (correct 
citation).

Funding Not applicable.

Data availability The data used in this study were obtained from the 
Alzheimer’s disease neuroimaging initiative (ADNI). The full data can 
be downloaded from (http:// adni. loni. usc. edu).

Code availability The code that supported the fndings of this study is 
available on request from the corresponding author (Latifa Houria).

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Reserach involving human and animal participants This article does 
not contain any studies with human participants or animals performed 
by any of the authors.

References

 1. Patterson C(2018) The state of the art of dementia research: New 
frontiers. World Alzheimer Report 2018

 2. Fox N, Warrington E, Freeborough P, Hartikainen P, Kennedy 
A, Stevens J, Rossor MN (1996) Presymptomatic hippocampal 
atrophy in Alzheimer’s disease: a longitudinal MRI study. Brain 
119(6):2001–2007

 3. Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P, Cavedo 
E, Galluzzi S, Marizzoni M, Frisoni GB (2016) Brain atrophy in 
Alzheimers disease and aging. Ageing Res Rev 30:25–48

 4. Apostolova LG, Dinov ID, Dutton RA, Hayashi KM, Toga AW, 
Cummings JL, Thompson PM (2006) 3d comparison of hip-
pocampal atrophy in amnestic mild cognitive impairment and 
Alzheimer’s disease. Brain 129(11):2867–2873

 5. Van de Pol L, Gertz H-J, Scheltens P, Wolf H (2011) Hippocam-
pal atrophy in subcortical vascular dementia. Neurodegener Dis 
8(6):465–469

 6. Bell-McGinty S, Lopez OL, Meltzer CC, Scanlon JM, Whyte 
EM, Dekosky ST, Becker JT (2005) Differential cortical atro-
phy in subgroups of mild cognitive impairment. Arch Neurol 
62(9):1393–1397

 7. Klein-Koerkamp Y, A Heckemann R, T Ramdeen K, Moreaud 
O, Keignart S, Krainik A, Hammers A, Baciu M, Hot P (2014) 
Amygdalar atrophy in early Alzheimers disease. Curr Alzheimer 
Res 11(3):239–252

 8. Ringman JM, O’Neill J, Geschwind D, Medina L, Apostolova 
LG, Rodriguez Y, Schaffer B, Varpetian A, Tseng B, Ortiz F et al 
(2007) Diffusion tensor imaging in preclinical and presympto-
matic carriers of familial Alzheimer’s disease mutations. Brain 
130(7):1767–1776

 9. Medina D, deToledo-Morrell L, Urresta F, Gabrieli JD, Moseley 
M, Fleischman D, Bennett DA, Leurgans S, Turner DA, Steb-
bins GT (2006) White matter changes in mild cognitive impair-
ment and ad: a diffusion tensor imaging study. Neurobiol Aging 
27(5):663–672

 10. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor 
spectroscopy and imaging. Biophys J 66(1):259–267

 11. Cherubini A, Péran P, Caltagirone C, Sabatini U, Spalletta G 
(2009) Aging of subcortical nuclei: microstructural, minerali-
zation and atrophy modifications measured in vivo using MRI. 
Neuroimage 48(1):29–36

 12. Fellgiebel A, Wille P, Müller MJ, Winterer G, Scheurich A, 
Vucurevic G, Schmidt LG, Stoeter P (2004) Ultrastructural hip-
pocampal and white matter alterations in mild cognitive impair-
ment: a diffusion tensor imaging study. Dement Geriatr Cogn 
Disord 18(1):101–108

 13. Kantarci K, Avula R, Senjem M, Samikoglu A, Zhang B, Wei-
gand S, Przybelski S, Edmonson H, Vemuri P, Knopman DS 
et al (2010) Dementia with Lewy bodies and Alzheimer disease: 
neurodegenerative patterns characterized by DTI. Neurology 
74(22):1814–1821

 14. Billeci L, Badolato A, Bachi L, Tonacci A (2020) Machine learn-
ing for the classification of Alzheimers disease and its prodro-
mal stage using brain diffusion tensor imaging data: a systematic 
review. Processes 8(9):1071

 15. Dyrba M, Ewers M, Wegrzyn M, Kilimann I, Plant C, Oswald A, 
Meindl T, Pievani M, Bokde AL, Fellgiebel A et al (2013) Robust 
automated detection of microstructural white matter degeneration 
in Alzheimers disease using machine learning classification of 
multicenter DTI data. PLoS ONE 8(5):64925

 16. O’Dwyer L, Lamberton F, Bokde AL, Ewers M, Faluyi YO, Tan-
ner C, Mazoyer B, O’Neill D, Bartley M, Collins DR et al (2012) 
Using support vector machines with multiple indices of diffusion 
for automated classification of mild cognitive impairment. PLoS 
ONE 7(2):32441

 17. Lella E, Amoroso N, Bellotti R, Diacono D, La Rocca M, Mag-
gipinto T, Monaco A, Tangaro S (2017) Machine learning for the 
assessment of Alzheimer’s disease through DTI. Applications of 
Digital Image Processing XL, vol 10396. SPIE, Bellingham, pp 
239–246

 18. Maggipinto T, Bellotti R, Amoroso N, Diacono D, Donvito G, 
Lella E, Monaco A, Scelsi MA, Tangaro S, Initiative ADN et al 
(2017) DTI measurements for Alzheimers classification. Phys 
Med Biol 62(6):2361

 19. Lella E, Pazienza A, Lofù D, Anglani R, Vitulano F (2021) An 
ensemble learning approach based on diffusion tensor imag-
ing measures for Alzheimers disease classification. Electronics 
10(3):249

 20. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nich-
ols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, 

http://adni.loni.usc.edu
http://adni.loni.usc.edu


Physical and Engineering Sciences in Medicine 

1 3

Matthews PM et al (2006) Tract-based spatial statistics: vox-
elwise analysis of multi-subject diffusion data. Neuroimage 
31(4):1487–1505

 21. Lee G, Fujita H (2020) Deep learning in medical image analysis: 
challenges and applications, vol 1213. Springer, Cham

 22. Hazarika RA, Abraham A, Sur SN, Maji AK, Kandar D (2021) 
Different techniques for Alzheimers disease classification using 
brain images: a study. Int J Multimed Inf Retr 2021:1–20

 23. Wang S-H, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) 
Classification of Alzheimers disease based on eight-layer convo-
lutional neural network with leaky rectified linear unit and max 
pooling. J Med Syst 42(5):1–11

 24. Ashraf A, Naz S, Shirazi SH, Razzak I, Parsad M (2021) Deep 
transfer learning for Alzheimer neurological disorder detection. 
Multimed Tools Appl 80(20):30117–30142

 25. Naz S, Ashraf A, Zaib A (2022) Transfer learning using freeze 
features for Alzheimer neurological disorder detection using Adni 
dataset. Multimed Syst 28(1):85–94

 26. Maqsood M, Nazir F, Khan U, Aadil F, Jamal H, Mehmood I, 
Song O-y (2019) Transfer learning assisted classification and 
detection of Alzheimers disease stages using 3d MRI scans. Sen-
sors 19(11):2645

 27. Mehmood A, Maqsood M, Bashir M, Shuyuan Y (2020) A deep 
Siamese convolution neural network for multi-class classification 
of Alzheimer disease. Brain Sci 10(2):84

 28. Savaş S (2022) Detecting the stages of Alzheimers disease 
with pre-trained deep learning architectures. Arab J Sci Eng 
47(2):2201–2218

 29. Mehmood A, Yang S, Feng Z, Wang M, Ahmad AS, Khan R, 
Maqsood M, Yaqub M (2021) A transfer learning approach for 
early diagnosis of Alzheimer’s disease on MRI images. Neurosci-
ence 460:43–52

 30. Kang L, Jiang J, Huang J, Zhang T (2020) Identifying early mild 
cognitive impairment by multi-modality MRI-based deep learn-
ing. Front Aging Neurosci 12:206

 31. Jiang J, Kang L, Huang J, Zhang T (2020) Deep learning based 
mild cognitive impairment diagnosis using structure MR images. 
Neurosci Lett 730:134971

 32. Eroglu Y, Yildirim M, Cinar A (2022) MRMR-based hybrid con-
volutional neural network model for classification of Alzheimer’s 
disease on brain magnetic resonance images. Int J Imaging Syst 
Technol 32(2):517–527

 33. Massalimova A, Varol H.A (2021) Input agnostic deep learn-
ing for alzheimers disease classification using multimodal MRI 
images. In: 2021 43rd Annual International Conference of the 
IEEE Engineering in Medicine & Biology Society (EMBC), pp. 
2875–2878. IEEE

 34. Aderghal K, Afdel K, Benois-Pineau J, Catheline G, Initiative 
ADN et  al (2020) Improving Alzheimer’s stage categoriza-
tion with convolutional neural network using transfer learning 
and different magnetic resonance imaging modalities. Heliyon 
6(12):05652

 35. Marzban EN, Eldeib AM, Yassine IA, Kadah YM, Initiative ADN 
(2020) Alzheimers disease diagnosis from diffusion tensor images 
using convolutional neural networks. PLoS ONE 15(3):0230409

 36. Ahmed OB, Benois-Pineau J, Allard M, Catheline G, Amar CB, 
Initiative ADN et al (2017) Recognition of Alzheimer’s disease 
and mild cognitive impairment with multimodal image-derived 
biomarkers and multiple kernel learning. Neurocomputing 
220:98–110

 37. Perez-Gonzalez J, Jiménez-Ángeles L, Saavedra KR, Morales EB, 
Medina-Bañuelos V, Initiative ADN et al (2021) Mild cognitive 
impairment classification using combined structural and diffusion 
imaging biomarkers. Phys Med Biol 66(15):155010

 38. Fang M, Jin Z, Qin F, Peng Y, Jiang C, Pan Z (2022) Re-transfer 
learning and multi-modal learning assisted early diagnosis of Alz-
heimers disease. Multimed Tools Appl 2022:1–17

 39. Agostinho D, Caramelo F, Moreira AP, Santana I, Abrunhosa A, 
Castelo-Branco M (2021) Combined structural MR and diffusion 
tensor imaging classify the presence of Alzheimers disease with 
the same performance as MR combined with amyloid positron 
emission tomography: a data integration approach. Front Neurosci 
15:638175

 40. Petersen RC, Aisen P, Beckett LA, Donohue M, Gamst A, Harvey 
DJ, Jack C, Jagust W, Shaw L, Toga A et al (2010) Alzheimer’s 
disease neuroimaging initiative (Adni): clinical characterization. 
Neurology 74(3):201–209

 41. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE 
(2011) Statistical parametric mapping: the analysis of functional 
brain images. Elsevier, Amsterdam

 42. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith 
SM (2012) FSL. Neuroimage 62(2):782–790

 43. Cusano C, Ciocca G, Schettini R (2003) Image annotation using 
SVM. Internet imaging V, vol 5304. SPIE, Bellingham, pp 
330–338

 44. Raju M, Gopi VP, Anitha V, Wahid KA (2020) Multi-class diagno-
sis of Alzheimers disease using cascaded three dimensional-con-
volutional neural network. Phys Eng Sci Med 43(4):1219–1228

 45. Feng W, Halm-Lutterodt NV, Tang H, Mecum A, Mesregah MK, 
Ma Y, Li H, Zhang F, Wu Z, Yao E et al (2020) Automated MRI-
based deep learning model for detection of Alzheimers disease 
process. Int J Neural Syst 30(06):2050032

 46. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifi-
cation with deep convolutional neural networks. Adv Neural Inf 
Process Syst 25:1

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.


	Multi-modality MRI for Alzheimer’s disease detection using deep learning
	Abstract
	Introduction
	Methodology
	Database
	Pre-processing
	2D slice selection
	Feature extraction using 2DCNN
	Classification using support vector machine (SVM)
	Multi-modality MRI fusion process

	Results
	Experiments
	Evaluation

	Discussion
	Conclusions
	Acknowledgements 
	References




